$\frac{40}{8}$

 Ansonia Public Schools Ansonia, Connecticut MATH Summer Practice for a Student Entering Grade 7

Name: \qquad

Please complete your summer review packet in preparation for seventh grade math. Please show as much work as you can for each problem. This will help if you are asked how you got your answer. Do Not Use a Calculator.

This packet was designed to help you retain important skills needed to move forward in Math. You are highly encouraged to complete this packet. It will be collectected during the first week of school.

The reflection page at the back of the packet will be collected as well. Remember, all incoming seventh graders are expected to have their math facts mastered.

It's always good to practice. Here are some websites that make practicing fun!

- https://www.ixl.com/signin/ansonia (Log On using your IXL username and password)
- https://www.reflexmath.com/ (Log On using CLEVER)

Due Date: This will be collected during the first week of school by the student's teacher. There will be an incentive for all students who turn in their math packet.

Table of Contents

> Pages 1-2: Notes for Week 1
> Pages 3-4: Week 1 Questions
> Pages 5-7: Notes for Week 2
> Pages 8-9: Week 2 Questions
> Pages 10-11: Notes for Week 3
> Pages 12-13: Week 3 Questions
> Pages 14-15: Week 4 Questions
> Page 16: Reflection

> * Pages $3-4,8-9$, and $12-16$ must be completed by September $13^{\text {th }}$ *
> * Pages $1-2,5-7$, and $10-11$ are notes for reference *

Week 1: Order of Operations, Evaluating Expressions, Equations

Order of Operations

Objective: Evaluate numeric expressions using order of operations.

- A numerical expression is a combination of numbers and operations.
- The Order of Operations tells you which operation to perform first so that everyone gets the same final answer.
- The Order of Operations is: Parentheses, Exponents, Multiplication or Division (left to right), and Addition or Subtraction (left to right.)

Examples:

$48 \div(3+3)-2^{2} \quad$ original expression
$48 \div 6-2^{2} \quad$ simplify the expression inside the parentheses
$48 \div 6-4 \quad$ calculate 2^{2}
8-4 divide 48 by 6
4 subtract 4 from 8

Evaluating Expressions

Objective: Evaluate an algebraic expression.

- A variable is a symbol, usually a letter, used to represent a number.
- Algebraic expressions are combinations of variables, numbers, and at least one operation.
- Multiplication in algebra can be shown as $4 n$ or $4 \times n$
- The variables in an algebraic expression can be replaced with any number.
- Once the variables have been replaced, you can evaluate, or find the value of, the algebraic expression.

Examples:

Evaluate $44+n$ if $n=9 \quad 44+n \quad$ original expression
$44+9$ replace the variable with it's value
53 solution

Equations

Objective: Determine the unknown in a linear equation (addition \& subtraction).

- Addition equations: Subtract the same number from each side of the equation so that the two sides remain equal.
- Subtraction equations: Add the same number to each side of the equation so that the two sides remain equal.

Examples:

$b+3=6$	original equation	$b-8=4$	original equation
-3-3	subtract 3 from each side	+8 +8	add 4 to each side
$b+0=3$	solution	$b+0=12$	solution
b $=3$	simplify	$\mathrm{b} \quad=12$	simplify

Objective: Determine the unknown in a linear equation (multiplication \& division).

- In a multiplication equation, the number by which a variable is multiplied is called the coefficient. In the multiplication equation $2 x=8$, the coefficient is 2 .
- Multiplication equations: Divide both sides by the coefficient so that the two sides remain equal.
- In a division equation, the number by which the variable is divided is called the divisor. In the division equation $\frac{x}{4}$,

4 is the divisor.

- Division equations: Multiply both sides of the equation by the divisor so that the two sides remain equal.

Examples:

$4 b=16$	original equation
$\overline{4}$	-4
divide both sides by 4	
$1 b=4$	solution
$b=4$	simplify

$$
\begin{aligned}
\frac{m}{6} & =11 & & \text { original equation } \\
6 \times \frac{m}{6} & =11 \times 6 & & \text { multiply each side by } 6 \\
1 m & =66 & & \text { solution } \\
m & =66 & & \text { simplify }
\end{aligned}
$$

To check your solution to an equation.

1) Rewrite the original equation.
$4 b=16$
2) Substitute the solution for the variable.

Week 1: Order of Operations, Evaluating Expressions, \& Equations

1) Evaluate $150+n$, if $n=15$	2) Evaluate $12 n$, if $n=9$
3) Evaluate $15 n+19$, if $n=\frac{1}{3}$	4) Evaluate $24 n+k$, if $n=2$ and $k=8$
5) Simplify the expression below. $(8+1) \cdot 12-13$	6) Simplify the expression below. $13(4)-72 \div 8$
7) Simplify the expression below. $100 \div 5^{2} \cdot 4^{3}$	8) Simplify the expression below. $88-16 \cdot 5+2-3$
9) Simplify the expression below. $\left(5^{2}+3^{3}\right)+(81+9) \div 10$	10) Explain why it is important to follow the order of operations.

Week 1: Order of Operations, Evaluating Expressions, \& Equations

11) Solve and check $9+5=12$	12) Solve and check $s-12=29$
13) Solve and check $m+8=10$	14) Solve and check $k-55=87$
15) Solve and check $w+3=14$	16) Solve and check $7 x=63$
17) Solve and check $5 b=255$	18) Solve and check $\frac{x}{4}=8$ 19 5 an equation.

Week 2: Decimal and Fraction Operations, Integers

Decimal Operations
Adding and Subtracting
Follow these rules
\rightarrow Find the decimal
\rightarrow Line up decimals
Line up the $>$ decimal points... $+\quad 7.49$

Just turn that whole number into a decimal!
\rightarrow Fill in empty spots with zeros
\rightarrow Add or Subtract
\rightarrow It's that easy!!!!!!!
$3.8-1.26$

$$
\begin{aligned}
& 7 \\
& 3.80 \leftarrow \begin{array}{l}
\text { Stick a aero in } \\
\text { there so you can }
\end{array} \\
& -1.26 \quad \begin{array}{c}
\text { do your borrowing } \\
\text { (regrouping)! }
\end{array}
\end{aligned}
$$

Multiplying

Objective: Multiply decimals.
Examples: Multiply 3.4 X 1.2
3.4

X 1.2
$68 \leftarrow$ multiply 34 by 2 (ignore the decimal point)
$+340 \leftarrow$ multiply 34 by 10 (the 1 is in the tens place)
$408 \leftarrow$ add 68 and 340
Count the number of decimal places in the original problem.
Since there are 2 total decimal places, the answer should also
3.4 (1 decimal place)

X 1.2 (1 decimal place)
4.082 total decimal places
have 2 decimal places.
Answer 4.08

Dividing

Objective: Divide decimals.
Example: Divide $45.9 \div 3$

15.3	Place decimal directly above the decimal point in the dividend
$3 \longdiv { 4 5 . 9 }$ decimal point in the dividend	
-3	
15	
	Divide as with whole numbers
9	
-9	

Fraction Operations

Objective: Add and subtract fractions and mixed numbers and express answers in simplest form.

Adding and Subtracting Fractions:

1) determine the least common denominator (LCD) of the fractions
2) rewrite each fraction as an equivalent fraction using the LCD
3) Add or subtract the fractions
4) Simplify if necessary

EX: Add $\frac{1}{2}+\frac{3}{8}$

1) LCD of 2 and 8 is 8
2) $\frac{1}{2}=\frac{4}{8}$

$$
+\frac{3}{8}=\frac{3}{8}
$$

3) $\frac{7}{8}$
4) (can't be simplified)

EX: Subtract $3 \frac{3}{5}-1 \frac{1}{6}$

1) LCD of 5 and 6 is 30
2) $3 \frac{3}{5}=3 \frac{18}{30}$
$-1 \frac{1}{6}=-1 \frac{5}{30}$
3) $2 \frac{13}{30}$
4) (can't be simplified)

Objective: Multiply fractions and mixed numbers and express answers in simplest form.

Multiplying Fractions and Mixed Numbers:

1) Change Mixed numbers to improper fractions
2) Multiply numerators
3) Multiply denominators
4) Simplify if necessary

EX: multiply $\frac{1}{2} \times \frac{3}{8}$

1) No mixed numbers
2) $\frac{1}{2} \times \frac{3}{8}=\frac{3}{}$
3) $\frac{1}{2} \times \frac{3}{8}=\frac{3}{16}$
4) (can't be simplified)

EX: Multiply $\frac{1}{3} \times 6 \frac{3}{7}$

1) $6 \frac{3}{7}=\frac{45}{7}$ as an improper fraction
2) $\frac{1}{3} \times \frac{45}{7}=\frac{45}{}$
3) $\frac{1}{3} \times \frac{45}{7}=\frac{45}{21}$
4) Simplified: $\frac{45}{7}=2 \frac{1}{7}$

Integers

Objective: Read, write, and represent integers.

Examples:

Integer: Any number from the set $\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$

Write an integer to describe each situation
EX: a height increase of 3 inches
The word increase represents positive. The integer is 3 or +3 .
EX: $\quad 50$ feet below sea level
The word below represents negative. The integer is $\mathbf{- 5 0}$.

Week 2: Decimal and Fraction Operations, Integers

1) $3.25+21.061$	2) $32.05-7.6$
3) John and his two friends went out to lunch. Their lunches cost $\$ 7.29, \$ 8.45$, and $\$ 5.99$. If they each put in $\$ 10$, how much total change will they get back?	4) 7.89×0.2

Week 2: Decimal and Fraction Operations, Integers

- (All answers should be in simplest form)

11) $\frac{4}{6}+\frac{1}{3}$
12) $3 \frac{5}{6}-1 \frac{4}{5}$
13) Shelly has two pieces of yarn. One is $1 \frac{1}{2}$ yards long and the other is $2 \frac{3}{4}$ yards long. How much yarn does she have altogether?
14) $\frac{9}{10} x \frac{2}{3}$
15) $2 \frac{1}{4} \times 3 \frac{1}{3}$
16) Belinda lives $1 \frac{1}{2}$ times further from school than Jamie does. If Jamie lives $4 \frac{1}{5}$ miles from school, how far does Belinda live?
17) Write an integer to describe:

Frederick is located 290 feet above sea level.

Converting Fractions to Decimals

Objective: Identify and determine equivalent forms of proper fractions as decimals, percents, and ratios
Examples: Write $\frac{21}{25}$ as a decimal

Method 1:
Change $\frac{21}{25}$ to a fraction with a denominator of 10,100 , or 1000

$$
\text { EX: } \frac{21}{25}=\frac{?}{100}
$$

$$
\frac { 2 1 } { 2 5 } \rightarrow 2 5 \longdiv { 2 1 . 0 0 }
$$

$$
-200
$$

(Use 100, since 25 divides into 100 evenly)

$$
100
$$

$$
\frac{21}{25}=\frac{x 4}{x 4}=\frac{84}{100} \quad \frac{84}{100}=0.84 \text { as a decimal }
$$

Therefore: $\frac{21}{25}=0.84$

Converting to Fractions, Decimals, and Percents

To convert from...	Fraction	Decimal	Percent
Fraction		Divide numerator by denominator	Divide numerator by denominator, then multiply by 100
Decimal	Write digits as a fraction over the place value the number is written to, then simplify		Multiply by 100
Percent	Write over 100, then simplify	Divide by 100	

Fraction to Percent:

EX: Change $\frac{19}{25}$ to a percent
Since \% means out of $100, \frac{19}{25}=\frac{?}{100}$

$$
\begin{aligned}
& \frac{19}{25}=\frac{x 4}{x 4}=\frac{76}{100} \\
& \frac{76}{100}=76 \%
\end{aligned}
$$

Percent to fraction:

EX: Change 75% to a fraction in simplest form
75% means 75 out of 100
$75 \%=\frac{75}{100} \quad \begin{aligned} & \text { Write the percent as a fraction } \\ & \text { with a denominator of } 100\end{aligned}$
$\frac{75}{100} \div 25=\frac{35}{4} \quad$ Simplify

Ratios

Key Concept: Ratio: a comparison of two numbers
A ratio can be written in 3 ways: $a: b$ a to b or
a
b
EX: Write the ratio as a fraction simplest form: 4 wins to 6 losses
Since the ratio can be written as: $\frac{4}{6}$ we can the simplify to $\frac{2}{3}$ or $2: 3$ or 2 to 3

Percents

Objective: Determine 10, 20, 25, or 50 percent of a whole number.

Example: Determine 25\% of 40

Method 1:
Change the percent to a fraction and multiply
$25 \%=1 / 4$
$\frac{1}{4} \times 40=10$
Therefore 25% of 40 is 10 .

Method 2:
Change the percent to a decimal and multiply
$25 \%=0.25$
$0.25 \times 40=10.00$
Therefore 25% of 40 is 10 .

40

$\times 0.25$

200
$+800$

Week 3: Converting to Fractions, Decimals \& Percents, Ratios, and Percents
\(\left.\begin{array}{|l|l|}\hline 1) Write \frac{3}{4} as a decimal

use method 1 from reference sheet \& 2) Write \frac{3}{5} as a decimal.

use method 1 from reference sheet\end{array}\right]\)| 3) Write $\frac{27}{40}$ as a decimal |
| :--- |
| use method 2 from reference sheet |
| use method 2 from reference sheet |
| 5) Change $\frac{17}{20}$ to a percent |

Week 3: Converting to Fractions, Decimals \& Percents, Ratios, and Percents

11) Write the ratio as a fraction in simplest form: 10 circles to 15 triangles	12) Write the ratio as a fraction in simplest form: 8 cups to 2 servings
13) Write the ratio as a fraction in simplest form: 9 pens to 11 pencils	14) Determine 20% of 65 15) Determine 50% of 120 17) Determine 10% of 35 19 20% of the 250 students ate pizza for lunch. How many students ate pizza?
16) Nina saved 10% on her CD purchase. If the CD originally cost $\$ 24.90$ how much would she save? What would the new price be?	

Week 4: Mixed Practice

1) $98.5+7.68$	2) 45-22.75
3) If $k=9$ evaluate $2 k-5$	4) If $k=9$ evaluate $\frac{k+9}{6}$
5) Susan earned $\$ 75$ babysitting this month. Her goal is to put 30% of her earnings into the bank every month. How much of her $\$ 75$ should she put in the bank to reach her goal?	6) Jaden lives $1 \frac{3}{4}$ miles from school. On the first day of school, his mom dropped him off in the morning. After school he walked home for a snack, then walked back to school for soccer practice, and finally walked home after practice. How many total miles did he walk?
7) Simplify the following expression. $350 \div 5\left(3^{2}+1\right)$	8) Solve for the given variable. $12 y=72$
9) 15.3×2.75	10) $5 \frac{1}{2} \div \frac{3}{4}$

$\text { 11) } \frac{5}{9}+\frac{2}{3}$	12) Solve for the given variable. $\frac{m}{8}=7$
13) Ms. Riess dug a hole 4 inches underground to plant tulips. If ground level represents zero, which integer represents the height of the hole?	14) Write $\frac{7}{20}$ as a decimal AND a percent.
15) Solve for the given variable. $27+a=32$	16) $51.85 \div 3.4$
17) Pablo scored 85% on his spelling test. Write his score as a decimal and a fraction in simplest form.	18) A litter of puppies has 6 females and 3 males. Write the ratio of female puppies to total puppies in simplest form.
19) Katie spent 25% of her 8 hour flight working on her summer math packet. For how many hours of her flight did she work on her packet?	20) To calculate sales tax in Massachusetts, multiply the total spent by 0.065 . Write this number as a percent and fraction in simplest form.

Summer Math Packet Reflection

\qquad

After completing your Summer Math Packet, please answer the following questions:

1) List the Math skills and concepts that you are most confident with. In other words, which problems were the easiest for you to solve? (example... order of operations)
\qquad
\qquad
\qquad
2) List the Math skills and concepts that you found to be the most difficult. In other words, which problems were the hardest for you to solve? (example... dividing decimals)
\qquad
\qquad
\qquad
\qquad
3) What are your expectations for Math class this year? What do you expect to learn? What do you expect Math class to be like?
4) Write two personal Math goals to strive towards this school year.

For example...
This year in Math class, I hope to memorize my Math facts.
I also want to get better at solving word problems.

